Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation.
نویسندگان
چکیده
We have developed previously a class of synthetic hybrid histone deacetylase (HDAC) inhibitors, which were built from hydroxamic acid of trichostatin A and pyridyl ring of MS-275. In this study we evaluated the antitumor effects of these novel hybrid synthetic HDAC inhibitors, SK-7041 and SK-7068, on human cancer cells. Both SK-7041 and SK-7068 effectively inhibited cellular HDAC activity at nanomolar concentrations and induced the time-dependent hyperacetylation of histones H3 and H4. These HDAC inhibitors preferentially inhibited the enzymatic activities of HDAC1 and HDAC2, as compared with the other HDAC isotypes, indicating that class I HDAC is the major target of SK-7041 and SK-7068. We found that these compounds exhibited potent antiproliferative activity against various human cancer cells in vitro. Growth inhibition effect of SK-7041 and SK-7068 was related with the induction of aberrant mitosis and apoptosis in human gastric cancer cells. Both compounds induced the accumulation of cells at mitosis after 6 h of treatment, which was demonstrated by accumulation of tetraploid cells, lack of G(2) cyclin/cyclin-dependent kinase inactivation, and higher mitotic index. After 12 h of treatment, apoptotic cells were increased through mitochondrial and caspase-mediated pathway. Finally, in vivo experiment showed that SK-7041 or SK-7068 was found to reduce the growth of implanted human tumors in nude mice. Therefore, based on isotype specificity and antitumor activity, SK-7041 and SK-7068 HDAC inhibitors are expected to be promising anticancer therapeutic agents and need additional clinical development.
منابع مشابه
Syntheses and discovery of a novel class of cinnamic hydroxamates as histone deacetylase inhibitors by multimodality molecular imaging in living subjects.
Histone deacetylases (HDAC) that regulate gene expression are being explored as cancer therapeutic targets. In this study, we focused on HDAC6 based on its ability to inhibit cancerous Hsp90 chaperone activities by disrupting Hsp90/p23 interactions. To identify novel HDAC6 inhibitors, we used a dual-luciferase reporter system in cell culture and living mice by bioluminescence imaging (BLI). On ...
متن کاملIdentification of novel isoform-selective inhibitors within class I histone deacetylases.
Histone deacetylases (HDACs) represent an expanding family of protein modifying-enzymes that play important roles in cell proliferation, chromosome remodeling, and gene transcription. We have previously shown that recombinant human HDAC8 can be expressed in bacteria and retain its catalytic activity. To further explore the catalytic activity of HDACs, we expressed two additional human class I H...
متن کاملHistone deacetylase inhibitors in cancer treatment.
Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anticancer agents for the treatment of solid and hematological malignancies. In recent years, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in culture and in animal models. HDAC inhibiti...
متن کاملPreclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor
ST7612AA1 (property of Sigma-Tau), a thioacetate-ω (γ-lactam amide) derivative, is a potent, second generation, oral pan-histone deacetylase inhibitor (HDACi). Aim of the study was to assess the efficacy of ST7612AA1 in solid and haematological tumors, and to characterize its mechanism of action. In vitro, ST7612AA1 potently inhibited different class I and class II HDACs, leading to restore the...
متن کاملThe Class I Hdac Inhibitor Mgcd0103 Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Initiating Cells by Upregulating Dickkopf-1 and Non-Canonical Wnt Signaling
Colorectal cancer metastatic recurrence and chemoresistance are major causes of morbidity and mortality. Colon cancer initiating cells (CCIC) are thought to contribute to both these processes. To identify drugs with anti-CCIC activity we screened a number of FDA approved and investigational compounds. We found that the class I selective histone deacetylase inhibitor (HDACi) MGCD0103 has signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 10 15 شماره
صفحات -
تاریخ انتشار 2004